A new reality: $B \to \pi\pi \text{ annihilation}$ in SCET

Christian Arnesen
with Zoltan Ligeti, Ira Rothstein, and Iain Stewart
A,L,R,S hep-ph/0607001
A,R,S hep-ph/0611356

Outline

- motivation
- classification of power-suppressed contributions
- o local annihilation
- complex annihilation
- three-parton annihilation

with
$$M_1$$
 M_2 $\in \{\pi, \rho, K, K^*\}$

- * probe strong dynamics and CP
- ullet B-factories: $\operatorname{Br}, \mathcal{A}, C, S$ $\mathcal{A}_{K\pi} = -0.107 \pm 0.018$

$B \to M_1 M_2$ in the Standard Model

$$\begin{array}{c}
V_{ub}V_{uf}^* \\
V_{cb}V_{cf}^* \\
+V_{tb}V_{tf}^* \\
\hline
0
\end{array}$$

$$A(ar{B}
ightarrow M_1 M_2) = \ V_{ub} V_{uf}^* T + V_{cb} V_{cf}^* P$$
 "penguin"

QCD for P,T: expand in small #'s

- SU(2) isospin
- power counting
- strong coupling

$$m_{u,d}/\Lambda_{\rm QCD} \approx 0.03$$

$$\Lambda_{\rm QCD}/E_M \approx 0.2$$

$$\alpha_s \approx 0.1 - 0.35$$

reduces # of non-perturbative inputs

A little theory + a lotta experiment:

(Jain, Rothstein, Stewart 07)

$$10^{3} \hat{P}^{\pi\pi} = (1.82 \pm 0.86) - i(2.99 \pm 0.74)$$

$$10^{3} \hat{P}^{K\pi} = -(4.45 \pm 0.81) + i(3.23 \pm 1.11)$$

$$\hat{\equiv} / \frac{G_F m_B^2 \text{GeV}}{\sqrt{2}}$$

large imaginary parts

$$T = T^* > 0$$

Chasing large imaginary penguins

≥ ¿annihilation?

PQCD (Keum, Li, Sanda): yes

QCDF (Beneke, Buchalla, Neubert, Sachrajda): not computable

SCET (CA, Ligeti, Rothstein, Stewart): NO

- i large missing short distance phase?

 SCET (Beneke, Jager), (Jain, Rothstein, Stewart): no
- icharm loops in the resonance region?
- le new physics?

$B o M_1 M_2$: the SCET calculation

$$\underbrace{n = (1, 0, 0, 1)}_{}$$

$$\bar{n} = (1, 0, 0, -1)$$

 $\mathsf{SCET}_{\mathsf{II}}$ power expansion: series in $\eta \sim \frac{\Lambda_{\mathsf{QCD}}}{O}$

SCET_{II} degrees of freedom

$$\zeta_p \equiv \frac{p}{p^+}$$

mode:

n-collinear

soft

n-collinear

$$(+,-,\perp)$$
:

$$Q(\eta^2, 1, \eta)$$

$$Q(\eta,\eta,\eta)$$

$$Q(1, \eta^2, \eta)$$

fields:

$$\xi_n, A_n$$

$$h_v, q_s, A_s$$

 $\xi_{ar{n}}, A_{ar{n}}$

Decay amplitude

$$H_W^{
m QCD}$$

$$A(\bar{B} \to M_1 M_2) \qquad \stackrel{H_W^1}{=} = -i\langle M_1 M_2 | H_W^{II} | \bar{B} \rangle$$

- = -i * matching coefficients
 - $\otimes \langle M_1|c_n \text{ fields}|0\rangle$
 - $\otimes \langle M_2 | c_{\bar{n}} \text{ fields} | 0 \rangle$
 - $\otimes \langle 0| \text{soft fields} | \bar{B} \rangle$

Classification of power-suppressed amplitudes

$\begin{array}{ c c }\hline \text{Order in} \\ \Lambda/m_b \end{array}$	$\begin{array}{c} {\rm Time\text{-}ordered\ products} \\ {\rm in\ SCET_I} \end{array}$	Perturbative Annihilation	order Other
$A^{(0)}$	$Q_i^{(0)} \mathcal{L}_{\xi q}^{(1)}, \ Q_i^{(0)} \mathcal{L}_{\xi q}^{(2)}, \ Q_i^{(0)} \mathcal{L}_{\xi q}^{(1)} \mathcal{L}^{(1)}$		$\alpha_s(\mu_i)$
	$Q_i^{(1)}\mathcal{L}_{\xi q}^{(1)}$		$\alpha_s(\mu_i)$
$A^{(1)}$	$Q_i^{(j'=0,1)} \mathcal{L}_{\xi q}^{(j\leq 4)} \prod_i \mathcal{L}^{(k_i)}$		$\alpha_s(\mu_i)$
	$Q_i^{(4)}$	$\alpha_s(\mu_h)$	
	$Q_i^{(2)}\mathcal{L}_{\xi q}^{(1)}$	$\left \alpha_s(\mu_h) \right $	$\alpha_s(\mu_i)$
	$Q_i^{(0)} \left[\mathcal{L}_{\xi q}^{(1)} \right]^3, \ \ Q_i^{(0)} \left[\mathcal{L}_{\xi q}^{(1)} \right]^3 \mathcal{L}^{(1)}$	$\alpha_s^2(\mu_i)/\pi$	$\alpha_s^2(\mu_i)/\pi$
	$Q_i^{(0)} \left[\mathcal{L}_{\xi q}^{(1)} \right]^2 \mathcal{L}_{\xi q}^{(2)}, \ \ Q_i^{(1)} \left[\mathcal{L}_{\xi q}^{(1)} \right]^3$	$lpha_s^2(\mu_i)/\pi$	$\alpha_s^2(\mu_i)/\pi$
	$Q_i^{(2)}ig[\mathcal{L}_{\xi q}^{(1)}ig]^2$		$\alpha_s^2(\mu_i)/\pi$
	$Q_i^{(2)} \mathcal{L}_{\xi q}^{(1)} \mathcal{L}^{(1)}, Q_i^{(2)} \mathcal{L}_{\xi q}^{(2)}, Q_i^{(3)} \mathcal{L}_{\xi q}^{(1)}$	$\alpha_s(\mu_h) \alpha_s(\mu_i)/\pi$	$\alpha_s(\mu_i)$
$A^{(2)}$	$Q_i^{(5)}$	$\alpha_s(\mu_h)$	_

annihilation: "spectator" quark line ends at weak vertex

$Q^{(4)}$: local annihilation (ALRS)

SCET_I:

SCET_{II}:

$$O_{1d}^{(1L)} = \frac{2}{m_b^3} \sum_{q} \left[\bar{d}_s P_R b_v \right] \left[\bar{u}_{\bar{n},\omega_2} /\!\!\!/ P_L \, q_{\bar{n},\omega_3} \right] \left[\bar{q}_{n,\omega_1} /\!\!\!/ P_L u_{n,\omega_4} \right]$$

QCD:

$$O_{1d}^{(1L)} = \frac{2}{m_b^3} \sum_{q} \left[\bar{d}_s P_R b_v \right] \left[\bar{u}_{\bar{n},\omega_2} \not n P_L \, q_{\bar{n},\omega_3} \right] \left[\bar{q}_{n,\omega_1} \not \bar{n} P_L u_{n,\omega_4} \right]$$

has coefficient function:

$$a_{1u} = \frac{C_F \pi \alpha_s(\mu_h)}{N_c^2} \left[\frac{1}{\bar{x}^2 y} - \frac{1}{y(x\bar{y} - 1)} \right]_{\emptyset} \left(C_1 + \frac{3}{2} C_{10} \right)$$

Divergent convolution?

finite and real by zero-bin subtraction in M(anohar)S(tewart)-rapidity factorization:

$$A \propto f_B \int dx \, dy \left[\frac{1}{\bar{x}^2 y} - \frac{1}{y(x\bar{y} - 1)} \right]_{\varnothing} \phi_{M_1}(x) \phi_{M_2}(y) \in \Re$$

Where's the zero-bin contribution?

offending graph:

 \bar{x} in zero bin:

counted in T-products with $[\mathcal{L}_{\xi q}^{(1)}]^3$

Complex annihilation

 $\propto \alpha_s(\mu_i)^2$

$$A(\bar{B} \to M_1 M_2) = -i * \text{matching coefficients}$$

- $\otimes \langle M_1 | c_n | \text{fields} | 0 \rangle$
- $\otimes \langle M_2 | c_{\bar{n}} \text{ fields} | 0 \rangle$
- $\otimes \langle 0| ext{soft fields} | \bar{B} \rangle$

non-perturbative strong phase from incomplete cancellation of directed soft Wilson lines

$Q^{(2)}\mathcal{L}_{\xi q}^{(1)}$:three-parton annihilation (ARS)

$$\bullet = \mathcal{L}_{\xi q}^{(1)} = \bar{q}_{us}' ig \mathcal{B}_{n'}^{\perp} q_{n'}'$$

$$Q_{id}^{(2)} \propto \left[\bar{q}'_{n',\omega_5}\Theta_{us}b_v\right] \left[\bar{d}_{\bar{n},\omega_2}\Theta_{\bar{n}}q_{\bar{n},\omega_3}\right] \left[\bar{q}_{n,\omega_1}\Theta_nq'_{n,\omega_4}\right]$$

match onto SCETII

$$O_{id}^{(1T)} \propto rac{1}{n' \cdot k} \left[ar{q}_{s,n' \cdot k}' \Gamma_s b_v
ight] \left[ar{d}_{ar{n}} \Gamma_{ar{n}} q_{ar{n}}
ight] \left[ar{q}_n \Gamma_n q_n'
ight] ig \mathcal{B}_{n'}^{\perp eta}$$

QCD:

SCETI

$$Q_{1d}^{(2)} = \frac{2}{m_b^3} \sum_{q,q'} \left[\bar{q}'_{n,\omega_5} P_L \gamma_{\perp}^{\alpha} T^a b_v \right] \left[\bar{d}_{\bar{n},\omega_2} /\!\!\!/ P_L q_{\bar{n},\omega_3} \right] \left[\bar{q}_{n,\omega_1} /\!\!\!/ \gamma_{\alpha}^{\perp} T^a P_R q'_{n,\omega_4} \right],$$

$$Q_{2d}^{(2)} = \frac{2}{m_h^3} \sum_{q,q'} \left[\bar{q}'_{\bar{n},\omega_5} P_L \gamma_{\perp}^{\alpha} T^a b_v \right] \left[\bar{d}_{\bar{n},\omega_2} / \gamma_{\alpha}^{\perp} T^a P_R q_{\bar{n},\omega_3} \right] \left[\bar{q}_{n,\omega_1} / P_R q'_{n,\omega_4} \right],$$

$$Q_{3d,4d}^{(2)}=Q_{1d,2d}^{(2)}~rac{3e_{q'}}{2}$$
 + similar with color $1\otimes 1\otimes 1$

SCET_{II}:

$$O_{1d}^{(1T)} = \frac{1}{m_b^3 \, k^+} \sum_{q,q'} \left[\bar{q}'_{s,-k^+} P_L \not n \, S_n^\dagger b_v \right] \left[\bar{d}_{\bar{n},\omega_2} \not n P_L \, q_{\bar{n},\omega_3} \right] \left[\bar{q}_{n,\omega_1} \not \bar{n} \, (ig \mathcal{B}_\perp)_{n,\omega_5} P_R \, q'_{n,\omega_4} \right],$$

$$O_{2d}^{(1T)} = \frac{1}{m_b^3 \, k^-} \sum_{q,q'} \left[\bar{q}'_{s,-k^-} P_L \bar{n} \, S_{\bar{n}}^\dagger b_v \right] \left[\bar{d}_{\bar{n},\omega_2} /\!\!\!/ (ig \mathcal{B}_\perp)_{\bar{n},\omega_5} P_R \, q_{\bar{n},\omega_3} \right] \left[\bar{q}_{n,\omega_1} /\!\!\!/ P_R \, q'_{n,\omega_4} \right],$$

$$O_{3-4d}^{(1T)} = O_{1-2d}^{(1T)} \frac{3e_{q'}}{2}$$

hard matching coefficients:

"polluted"

$$a_1^{hc}(x,y,\bar{y}) = \frac{\pi\alpha_s(m_b)}{N_C} \left\{ \frac{2C_F C_5 + C_6}{y[x(1-y)-1]} + \frac{(2C_F - C_A)C_5 + C_6}{(1-x)y(1-\bar{y})} \right\},$$

$$a_2^{hc}(x,\bar{x},y) = \frac{\pi\alpha_s(m_b)}{N_C} \left\{ -\frac{(2C_F - C_A)C_5 + C_6}{\bar{x}[(1-\bar{x})(1-y)-1]} - \frac{2C_F C_5 + C_6}{\bar{x}y(1-x)} \right\}$$

factorization theorem:

$$A_{\text{hard-collin}}^{(1ann)} = \frac{G_F f_B m_B}{\sqrt{2} m_b N_c} \left(\lambda_u^{(d)} + \lambda_c^{(d)} \right) \int_0^\infty dk \, \frac{\phi_B^+(k)}{k}$$

$$\times \left\{ f_{3M_1} f_{M_2} \int_0^1 dx \int_0^1 dy \int_0^{1-y} d\bar{y} \, \frac{H_{hc1}^{M_1 M_2}(x, y, \bar{y})}{1 - y - \bar{y}} \, \phi_{3M_1}(y, \bar{y}) \phi_{M_2}(x) \right.$$

$$\left. + \eta_{M_1} f_{M_1} f_{3M_2} \int_0^1 dy \int_0^1 dx \int_0^{1-x} \frac{H_{hc2}^{M_1 M_2}(x, \bar{x}, y)}{1 - x - \bar{x}} \, \phi_{M_1}(y) \phi_{3M_2}(x, \bar{x}) \right\}$$

Numerical estimates

- simple model for distribution amplitudes
- non-perturbative parameters from QCD sum rules and lattice QCD
- large errors

$$\frac{|A_{Lann}^{(1)}(K^{-}\pi^{+})|}{|A_{Expt.Penguin}^{(1)}(K\pi)|} \approx 0.1 \pm 0.1$$

three parton pprox local

Conclusion

eliminated a possible source of large penguins: annihilation is factorizable and real